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Breakthroughs in the genetics of
angle-closure glaucoma

BY SANCY LOW, PAUL J FOSTER

ngle closure glaucoma (ACG) is
not widely known to be a familial
condition, yet the recent explosion
of genetic data and large scale
genome wide investigations have confirmed
at least 13 genetic loci associated with
ACG [1], and provided some insight into the
clinical and pathobiological mechanisms of
the disease.

Primary angle closure glaucoma (PACG)
is defined as iridotrabecular contact with
evidence of elevated intraocular pressure
(IOP), or peripheral anterior synechiae (PAS),
and glaucomatous optic neuropathy (GON),
with a reproducible visual field defect [2].
PACG is often diagnosed at the extremes of
phenotypes when there is advanced chronic
visual loss, or acute angle closure (AAC) [3].
Understanding the genetic aetiology for
PACG can help identify at-risk individuals at
earlier stages of the disease.

Family history reporting

There are more people worldwide bilaterally
blind from PACG than progressive open
angle glaucoma (POAG) [4] but reported
family history of PACG is less well studied.

A clinic report from Brazil found 25% of
their cases to have a reported family history
of PACG [5]. A population survey in Harbin,
Northeast China, found a positive family
history to be a significant risk factor of PACG,

with an odds ratio of 65 under univariate
logistic regression, or odds ratio of 1.65 in
the multivariate model [6]. Amerasinghe

et al. found that the relative risk of narrow
angles to first degree family members

is seven times higher than the general
population of Singaporean Chinese [7].
Kong et al. compared 332 PAC patients, 228
POAG and 193 controls in Shanghai, China
to investigate a glaucoma family history,
finding that a parent with PACG contributed
most to the family history of glaucoma in
the PAC, compared to POAG where siblings
and children contributed more to the family
history of glaucoma [8]. In India, Kavitha et
al. found that there was a 13.6 times greater
odds of angle-closure in siblings of PAC/G
subjects compared to open angle subjects in
a hospital setting [9]. A greater age effect was
observed for glaucoma in PACG.

Accurate phenotyping is crucial
When Lowe et al. first described a series of
families with angle-closure in Australia [10],
little was known about the natural history
of the disease. He noted that the rate of
AAC increased as anterior chamber depth
(ACDs) got shallower, but the co-inheritance
of PACG in multiple family members was
much less than angle-closure observed
without glaucoma. He proposed a major
environmental component to the disease
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Figure 1: Example of an AS-OCT scan of an affected individual and three pedigrees seen in our family clinic (2006-
2010) at Moorfields. Affected individuals are indicated as black squares or circles.

Phenotype of affected
individuals:

Red arrow indicates
scleral spur

Yellow line indicates
iridotrabecular
contact

mechanism, while emphasising that familial
PACG was rare but definitely observed [11].
Subsequent groups, such as Spaeth et al.,
Tomlinson et al. and Sihota et al. all reported
small ocular biometry to be prominentin
familial disease [12-14]. However, all these
reports had low rates of AAC.

Using the Spaeth gonioscopic grading
system, iris convexity was found to be
a common feature amongst affected
family members [13], and more recently
anterior segment imaging with ultrasound
biomicroscopy (UBM) and anterior
segment optical coherence tomography
(AS-OCT) have allowed detailed, objective
quantification of angle closure traits such
as thicker irides, anteriorly rotated ciliary
bodies, and iris vault to be studied. Figure
1shows a high resolution AS-OCT scan of
an affected individual with iridotrabecular
contact. Three pedigrees with multiple
affected individuals are illustrated.

Sihota et al. found that shallower ACD,
thicker lenses and shorter axial length (AL)
segregated in family members affected with
PACG compared to suspected and unaffected
subjects [12]. Using the UBM, Etter et al.
demonstrated a 50% rate of plateau iris
configuration, in a small collection of
predominantly white American families [15].

Previous heritability and
segregation analyses
The most recent segregation analysis
reporting 114 PACG families from Chongging,
China [16], found a significant difference
between gender groups. They concluded
that the inheritance of shallow angles may
be a sex-influenced trait with a reported
female:male ratio of 2.87:1, consistent
with the ratio found in other East Asian
population studies of PACG [4,17]. Families
with an unaffected (U) parent and an affected
parent (A) accorded with an autosomal
dominant hereditary trait, with the highest
heritability found for female relatives with
female probands [16].

Several investigators have provided
data on the segregation of ocular biometry
and PACG. Tomlinson and Leighton [14]
examined 16 index PACG patients, their
relatives (seven siblings, 14 offspring) and
49 controls, finding that the unaffected
relatives and patients with PACG also had
smaller corneal diameters, shallower (ACDs),
thicker crystalline lenses and shorter axial
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lengths compared to age-matched controls.
However, those affected with PACG had more
anteriorly positioned lenses, which were not
observed in unaffected siblings and offspring.
This finding was also observed by Rosengren
[18] and Philips and Storey [19]. Térnquist
from Sweden [20] found that eyes with

PACG had ACDs of 1.0mm less than normal
eyes, or two-thirds of the normal depth at
corresponding ages.

Twin studies are often the starting point of
dissecting genetic conditions, but there are
no reported twin studies in PACG. A curious
case report of two elderly identical twins who
were in a heated argument and fist fight and
both went into AAC together demonstrates
that stress and other physiological triggers
can influence disease presentation [21].
Hypermetropic refractive error is associated
with angle-closure, but its contribution to
PACG is likely to be incorporated with the
heritability of ACD and AL [22-24].

Genetic linkage and candidate
gene studies

Once a clear phenotype is identified, such
as AAC or PACG, genetic studies can be
performed. Aung et al. reported genetic
linkage in two large Chinese families,
examining the sharing of phenotypic and
genetic factors, more statistically found
together in affected individuals than
unaffected ones [25]. To date, this method
of genetic linkage has not identified any
causative genes for PACG. However, in more
extreme forms of the disease, two genes,
membrane frizzled related protein (MFRP,
associated with retinitis pigmentosa) [26,27]
and protease, serine 56 (PRSS56) [28] have
been identified to be causative for autosomal
recessive microphthalmia / nanophthalmia.
Both genes were identified using linkage
analysis.

Aung et al. also examined 108 patients
with PACG (49 with AAC and 59 chronic
cases) for MFRP and CHX10 mutations
[29]. CHX10 is a homeobox-containing
transcription factor critical for progenitor
cell proliferation and bipolar cell
determination in the developing retina. One
potential disease causing variant, G243D was
observed in CHX10in a patient with acute
PACG who also had a MFRP R257H mutation.
The clinical characteristics of the patient
involved: an 82-year-old patient diagnosed
at 75y with bilateral cup to disc ratio (CDR)
of 0.8 and 360° of PAS and biometry of
21.05mm for AL and 2.09mm for ACD. This
patient also carried an R46X polymorphism
in the myocilin gene (MYOC) [30]. MYOCis
an autosomal dominant genetic cause of
POAG. The G243D mutation in CHX10 may
be pathogenic as it was not found in 400
normal controls, but it was not possible to
show segregation of the G243D mutation in
the subject's family members [29]. This was
an example where sequence changes in three
/ multiple genes may each be contributing to

the disease in an individual patient with late
onset symptomatic PACG.

Genome wide association studies
PACG is clearly a complex disease with
multifactorial inheritance, so it is no surprise
that more success has been achieved with
genome-wide association studies (GWAS).
Using this methodology in 2012, three
single-nucleotide polymorphisms (SNPs),
rs11024102 in PLEKHA7, rs3753841in COL11A1
(a connective tissue gene) and rs1015213
between PCMTD1and ST18 were found to

be associated with AAC/PACG [3]. Day et al.
compared these three SNPs for association
to ACD, AL and corneal keratometry using

an additive genetic model for each allele in
the EPIC-eyes cohort. The presence of one

A allele for rs1015213 was associated with

a 0.07mm shallowing of ACD compared to
wild type homozygotes after adjusting for
the effects of age and sex [31]. The other two
SNPs were not associated with the biometric
characteristics tested. Little is known about
the function of PCMTD1 or ST18, the latter
encodes for suppression of tumorigenecity 18
which is thought to modulate inflammation
and apoptosis in fibroblasts [32] and has
been reported as a breast cancer tumour
suppressor gene [33].

The only GWAS study of ACD to date
was reported by Vithana et al. where three
well-characterised population based
studies: Singapore Malay Eye Study (SiMES),
Singapore Indian Eye Study (SINDI) and
Beijing Eye Study (BES) with a total of 5308
participants were analysed. Two strongly
associated intragenic SNPs on chromosome
39271 were identified [34]. The gene of
interest, ABCC5 (rs1401999) was widely
expressed and regulates cGMP levels in its
role as an organic anion pump. They were able
to replicate the finding in a further cohort of
Chinese subjects but not in Caucasians. This
SNP was only marginally associated with
PACG in a group of patients. Interestingly, this
gene was not found to be replicated in the
meta-analysis paper presented by Rong et al.
in 2016 [1]. Nongpiur et al. hypothesise that
the ABCC family of genes may be involved in
glaucoma as ABCC4 has previously been found
in the trabecular meshwork of a rabbit model
with pigmentary glaucoma [34]. Perhaps
overlapping anterior segment phenotypes will
begin to unravel as more glaucoma genetic
studies take place.

The most recent GWAS publication in PACG
reported five further SNPS in EPDR1, CHAT,
GLIS3, FERMT2, DPM2-FAM10A genes [35], and
confirmed the original three loci (PLEKHAZ,
COL11A1and PCTMD1-ST18) in the 2012 Vithana
paper [3] to be associated with AAC and PACG.

Discussion

The strongest association signal to date is

PLEKHA?7. This cell-cell signaling gene lies

close to the NNO1 locus linked to extreme

nanophthalmos where axial lengths of less

than 19mm and refractive errors of more
than +7DS were observed [36]. The GWAS
could not demonstrate an effect of PLEKHA7
on axial biometry or nanophthalmos.
However, it does suggest that physiological
mechanisms that maintain homeostasis in
epithelial and endothelial tissues can alter
the susceptibility to AAC and PACG, i.e. more
advanced stages of the disease.

In GWAS studies, often the only SNPs that
are reported are ones that have reached
genome-wide statistical significance setata
threshold of P<5 x 10-8. In the 2012 Vithana
paper [36], the fourth most significant locus
was thioredoxin reductase 2 (TXNRD2), a gene
involved in oxidative stress. Tissue expression
studies and the relationship between this
gene and its potential contribution to AAC
or glaucoma have not yet been studied.

The enzyme thioredoxin reductase (TR) is a
dimeric NADPH-dependent FAD containing
enzyme that catalyses the reduction of

the active site of disulphide of thioredoxin
and other substrates. It isa member of a
family of pyridine nucleotide-disulphide
oxidoreductases and a key enzyme in

the regulation of the intracellular redox
environment both in the cytosol and
mitochondria [3]. This gene partially overlaps
with the COMT gene on chromosome 22.
The COMT gene encodes for catechol-O-
methyltransferase (COMT) which catalyses
the transfer of a methyl group from
S-adenosylmethionine to catecholamines,
including the neurotransmitters dopamine,
epinephrine and norepinephrine. Oestrogens
such as 17B-oestradiol, catabolised in
hydroxylation reactions, are inactivated by
methylation, a process catalysed by COMT
[38]. This pathway is important in oestradiol
metabolism. There is increasing evidence
that the inheritance of particular variants

in these oestrogen-metabolising genes can
modulate the risk of hormone dependent
disorders such as prostate, ovarian, lung
and breast cancer [38]. Given the female
preponderance to ACG, this area of work

to understand the molecular genetic and
biochemical mechanisms underlying PACG
could lead to breakthroughs in our scientific
understanding and delivery of novel
therapies.

Conclusion

There is emerging research in the genetics
of ACG and keen phenotyping (skilled
clinicians) in partnership with molecular
biologists and statisticians can bridge the
gaps in our knowledge of the disease. Figure
2 simplifies the phenotypes that have been
discussed in this article. Even without
genetic data, ophthalmic practitioners can
recommend screening of family members,
and proactively teach and learn gonioscopy,
as accurate elucidation of clinical signs and
appropriate management is essential for the
diagnosis and prognosis of patients with AAC
and PACG.
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Figure 2: Phenotypes to look out for when considering a genetic cause for angle closure glaucoma.
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Further reading

Contact your local Allergan and ATHENA (Allergan
Ophthalmic Professionals Educational Alliance)
representative for the Early Diagnosis Program 4 —
Gonioscopy in the diagnosis of glaucoma by Sancy Low
and Gus Gazzard to get teaching materials and arrange
departmental gonioscopy learning.

TAKE HOME MESSAGE

«  Genetic aetiologies are different
for PACG and POAG.

«  Older female first degree relatives
are at highest risk of developing
disease, with small ocular
biometry and physical size as key
contributing factors.

«  Glaucomaand gonioscopic
examinations can be
recommended to patients who
have AAC or PACG.

«  Hyperopic refractive error
overlaps with PACG, and may have
shared genetic mechanisms.

«  Whena patient with atypical ACG
presents to your clinic, consider
connective tissue disorders.
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