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 A new focus has arisen within the research domain of artificial intelligence (AI) in 
healthcare called code-free deep learning (CFDL), and recent research demonstrates that 

ophthalmology is becoming one of the leading specialties in this field.
 

FEATURE

A rtificial intelligence (AI) is the science of developing 
machines with the ability to mimic the complexities of 
the human mind [1]. In recent years, its application in 
healthcare has shown very promising results, leading 

to increasing interest and investment in the field. In fact, the global 
AI healthcare market size is predicted to reach around US $187.95 
billion by 2030, with a compound annual growth rate of 37% 
between 2022 to 2030 [2].

 
Deep Learning (DL): the future of healthcare?
Deep learning (DL) is a subtype of AI which is causing considerable 
excitement within the field of healthcare. These algorithms are 
inspired by the neural networks of the human brain and have 
been revolutionary in the fields of image classification, object 
detection and natural language processing [3]. Ophthalmology is 
particularly suited for the application of DL due to its substantial 
use of medical imaging. For example, in 2018, a collaborative study 
between DeepMind and Moorfields Eye Hospital demonstrated that 
a DL algorithm could make referral recommendations for over 50 
sight-threatening retinal diseases using 14,884 optical coherence 
tomography (OCT) scans [4]. These referral recommendations 
exceeded that of experts in the field, emphasising the promising 
future of AI in healthcare.

Despite high expectations, there are some barriers to AI that are 
particularly challenging for those with minimal resources. These 
include the limited availability of experts in the field and the huge 
expenses and computing power required to develop DL models [5].

Code-Free Deep Learning (CFDL)
“AI that can build AI” was a headline generated by The New York 
Times for the inception of CFDL in 2017 [6]. CFDL describes user-
friendly platforms which allows the creation of DL algorithms 
without coding experience. This is a technique that potentially offers 
solutions to some of the barriers faced by bespoke AI technology. 

Within ophthalmology and other health specialties, this has provided 
healthcare professionals and researchers with the opportunity 
to create their own DL algorithms focusing on necessary clinical 
needs. CFDL is commercially available on several platforms which 
include Amazon Rekognition Custom Labels (Amazon); Apple 
Create ML (Apple); Baidu EasyDL (Baidu); Clarifai Train (Clarifai); 
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”

CFDL has the potential to 
democratise deep learning 
and could accelerate the 
development of clinical AI 
systems to achieve maximal 
patient benefit

“  Figure 1: Image classifier steps.
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Google Cloud AutoML Vision; Huawei ModelArts ExeML (Huawei); 
MedicMind Deep Learning Training Platform (MedicMind); and 
Microsoft Azure Custom Vision (Microsoft) [7].

 These platforms have intuitive user interfaces with simple drag 
and drop functions. In addition, cloud-based servers reduce the need 
for huge amounts of computing power. It must be noted, however, 
that the process of dataset curation has not been automated, and 
users must acquire datasets either from publicly available resources 
or from within their own institutions, provided strict ethical and data 
governance procedures are followed. 

The development of image classification models using CFDL is 
one of the most common applications. The process can be explained 
using a simple three-stage approach, replicating the user interface 
archetype of CFDL platforms (Figure 1) [8]. Once a high-quality 
dataset has been acquired, the first stage is to upload this directly 
from the local computer or using .CSV files via cloud storage 
buckets. The second stage is to visualise the data and amend any 
labels before splitting the data into training, validation, and test sets. 
The data split can be done automatically or manually. At this point, 
the platform automates the model training process which involves 
data pre-processing, architecture selection and hyperparameter 
optimisation. The final stage is to evaluate the model. The 
performance of a model is measured using similar techniques to 
medical statistics. These measurements include confusion matrices, 
recall (sensitivity), precision (positive predictive value), area under the 
precision-recall curve (AUPRC) and F1-score (balance of precision 
and recall). The similarities in the analysis of DL models and 
statistics used in clinical science make CFDL concepts quick to grasp 
for clinicians, as shown in several studies [7,9,11,12]. 

In addition, some platforms, namely MedicMind and Google, 
facilitate external validation of the model. External validation is the 
process of testing models using independent data which was not 
used in the initial training or testing steps [7]. Google also facilitates 
batch prediction which allows efficiency testing of the algorithm with 
large external datasets.  

 
Ophthalmology: Promising examples of clinically 
applied CFDL
Ophthalmology is one of the leading specialties in the exploration 
of AI in healthcare. This is evident within the clinical literature where 
there are several examples of CFDL applications.

If we believe that AI should be used in clinical practice alongside 
the medical expertise of clinicians in the future, this will require 
education for those without technical experience. CFDL provides 
the opportunity to learn and understand how AI can impact clinical 

decision-making, whilst practically creating CFDL algorithms. This 
was demonstrated by Faes et al. in 2019, whereby two physicians 
with no coding or machine learning experience successfully created 
deep learning image classification models using Google Cloud 
AutoML Vision [9]. These models used publicly available datasets, 
such as retinal fundus and OCT images. What was exciting about 
this study was the fact that the performance (AUPRC) of the 
ophthalmology-based models was comparable to bespoke deep 
learning models using the same datasets. These encouraging 
results showed the feasibility of non-technical clinicians developing 
DL algorithms with minimal training. There are other image 
classification successes using CFDL, for example, classifying retinal 
pathologies from ultra-widefield pseudocolour fundus images [10]. 
The performances of the models had very good diagnostic accuracy 
(sensitivity range 84.91% to 89.77%) in differentiating retinal vein 
occlusion, retinitis pigmentosa and retinal detachment from normal 
fundi. The significance of this study is that performance was once 
again comparable to bespoke DL models, emphasising that CFDL 
offers an opportunity for clinicians to develop their own DL solutions.

 Fares et al. carried out a similar study in 2020, whereby two 
ophthalmologists with no coding experience created a prediction 
model for postoperative proliferative vitreoretinopathy (PVR) 
following rhegmatogenous retinal detachment (RDD) repair [11]. 
This was done using an interactive application in MATLAB and was 
compared with bespoke manually coded models. Performances 
(F1 scores) were again comparable (and marginally higher), further 
emphasising the feasibility of CFDL, and the top model boasted an 
impressive specificity of 97.8%. This shows that prediction models 
can also be developed using CFDL which could help with identifying 
prognosis of disease and likelihood of success after treatment.  

 Another interesting study was carried out by Kim et al. 
Performance of human experts and CFDL models were compared in 
classifying pachychoroid disease [12]. Two models were generated, 
and the results were comparable to two retina specialists, with very 
similar precision and recall. It was also interesting to note that the 
CFDL models had achieved a superior performance compared to 
ophthalmic residents, further emphasising the potential of CFDL 
(89.19% precision and recall for top-performing model versus 68.18% 
and 92.50% for ophthalmic residents).

 Code-free deep learning can also be applied to tabular data. 
Abbas et al. introduced a Jupyter notebook extension to Google 
Cloud AutoML Tables using the What-If Tool (WIT) [13]. This is an 
open-source tool which allows users to see how model predictions 
change if input features are hypothetically changed, i.e., different 
patient subgroups can be analysed to test the bias of the models 
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Figure 2: Applications of CFDL.



generated. This study found that a model predicting visual acuity 
outcomes in neovascular age-related macular degenerations had 
varied performances across different ethnicities. The use of the WIT 
tool in CFDL gives the opportunity for models to be tested for bias 
to increase clinical applicability.

One of the most exciting results showing the potential of CFDL 
came from a study by Korot et al. [14]. The CFDL model managed 
to replicate a study by Poplin et al. which identified sex from 
retinal fundus images - a pattern which had never been clinically 
documented [15]. This feat demonstrates that CFDL can be used for 
clinical image classification, as well as in research to identify new 
patterns.

 
Limitations
CFDL offers great promise within the world of AI, however, parts of 
the process still require refining and regulation.

As discussed, platforms currently do not automate the process 
of labelling and formatting datasets which is a crucial stage in 
the development of robust deep learning algorithms. The initial 
manipulation of data must be done manually which can be time-
consuming and expensive. In addition, datasets must comply 
with ethical and data governance protocols especially when using 
hospital data [7,8]. This could lead to an element of discriminatory 
bias within the developed models (due to the specific selection of 
data available), which could increase health disparities, resulting in 
worse health outcomes, particularly for the minority populations. 
NHS England is planning a pilot to eradicate biases in AI to make 
software more ethical. The system designed by the Ada Lovelace 
Institute will allow an assessment of the possible risks of biases of 
an algorithm before being able to access NHS data [16]. 

 A further limitation is the ‘black-box phenomenon’, which is the 
inability to understand how the algorithm is determining results [7]. 
This means that the model created could be focussing on features 
which would not be clinically significant. This problem is not unique 
to CFDL, however, due to its automated nature, model explainability 
could be further reduced in comparison to bespoke DL models. A 
potential solution could be the integration of saliency maps which 
are currently available on MedicMind. Saliency maps help to map 
out on the image the sections that are targeted during the training 
process, which could help to provide some clinical interpretability 
[8]. 

A critical step that is often overlooked in CFDL platforms is the 
ability to carry out external validation. This is key to test, evaluate 
performance and further train algorithms to ensure that the system 
works for data which has not previously been seen. Currently, 
Google Cloud AutoML Vision allows users to carry out batch 
prediction using the command line interface as mentioned before 
[8]. Many platforms do not offer any form of external validation. If 
they were to include a function to automate this process, this would 
greatly support the feasibility of CFDL.

 
Future of CFDL and its potential applications
CFDL has the potential to democratise deep learning and could 
accelerate the development of clinical AI systems to achieve 
maximal patient benefit. Wider availability for non-technical 
clinicians and researchers without the need for a deeper 
understanding of mathematics and programming behind AI 
technology is an attractive proposition. Nevertheless, comparable 
results are currently limited, indicating the need for bespoke DL 
algorithms for a wider range of clinical AI systems. In these early 
stages, CFDL could be used as a tool for proof-of-concept projects 
prior to investing in the development of expensive and more 
advanced deep learning models [8].

The barriers of expensive running costs and the need for highly 
specialised programming expertise for AI systems is even greater 

for underprivileged healthcare systems across the world. CFDL 
provides a platform for those with limited resources to create DL 
systems. Screening programmes with the use of image classifiers 
could be implemented in under-resourced communities [17]. 
In addition, CFDL models can be downloaded and run on local 
edge models, which are low power models that do not require a 
continuous internet connection, easing the burden of poor internet 
infrastructure [18,19]. 

Many of the studies used clinicians to produce CFDL models. 
This shows the potential of these platforms to be used in medical 
education [20]. The practical experience would teach medical 
students and clinicians the skills needed to grasp an understanding 
of AI in healthcare, whilst demonstrating the ethical principles and 
limitations which need to be considered. Integration within medical 
education would give confidence to adapt to changing times in 
healthcare with huge focuses on the development of AI technology.

 
Conclusion
CFDL offers promising solutions to barriers of healthcare AI 
technology. With regulation and clinical validation, CFDL models will 
be key to leading the revolution of the democratisation of AI with 
applications in direct patient care, clinical research, and medical 
education.
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9.    

-   	 Deep learning has been shown to achieve promising 
results in image classification, object detection and natural 
language processing.

-   	 Code-free deep learning offers an opportunity for non-
technical clinicians and researchers to produce deep 
learning models, thereby representing a first step towards 
democratisation of AI-enabled healthcare.

-   	 Ophthalmology is a field which has been successful 
in producing CFDL models, with results comparable to 
bespoke algorithms.

-   	 Applications of CFDL could include direct patient care, 
although robust clinical validation would be required; prior 
to this CFDL is most likely to be used in clinical research 
and medical education. 

-   	 CFDL could be used as a proof-of-concept tool before 
investment for expensive bespoke AI. 
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