Simulated cataract surgery training of the non-dominant hand to improve bimanual performance Jennifer Hind, Carl Mulholland, Alan Cox, David Lockington

INTRODUCTION

- Intraocular surgery requires manual dexterity.
- Surgical simulation resources like the EYESI cataract simulator develop relevant dominant hand skills and bimanual surgical techniques.
- There is no formal assessment documenting how the non-dominant hand develops during this training.

AIMS

We set out to evaluate if the EYESI cataract modules could be shown to be effective at training the non-dominant hand and see if improving trainees' surgical competence resulted in improvements in confidence.

METHODS

- Ophthalmic trainees in Glasgow, UK, performed bespoke bimanual cataract surgery tasks before and after targeted non-dominant hand training on the EYESI simulator.
- A validated self-confidence survey regarding use of non-dominant hand in surgery was completed at the start and end of the study.
- Hand dominance was calculated using the shortened Edinburgh Handedness Inventory (EHI).

REFERENCES

- Oldfield RC. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia. 1971;9(1):97-113.
- Veale JF. Edinburgh Handedness Inventory Short Form: a revised version based on confirmatory factor analysis. Laterality. 2014;19(2):164-77.
- Stoet G. The Edinburgh Handedness Inventory (short form) [Internet]: Psytoolkit; 2020 [cited 2020 Jul 03]. Available from: https://www.psytoolkit.org/survey-library/handednessehi.html# introduction
- Geoffrion R, Lee T, Singer J. Validating a selfconfidence scale for surgical trainees. J Obstet Gynaecol Can. 2013;35(4):355-61.

Tennent Institute of Ophthalmology; Glasgow, Scotland. jennifer.hind@ggc.scot.nhs.uk. No relevant disclosures exist

RESULTS

- t=5.1194, p<0.05).

Task: Bimanual training, level 4

Time (s)

Odometer (mms⁻¹) Unintended movement off sphere **Instances (range)**

Total score

DISCUSSION

- is already the case with vitreo-retinal modules).
- alternate-handed trainees.

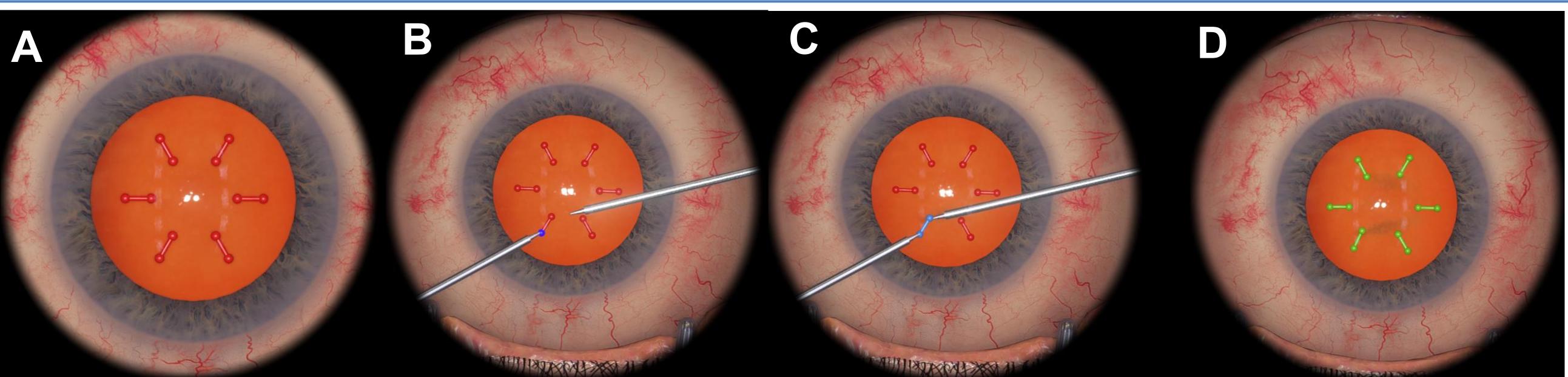


Figure 1: Trainees were assessed performing bimanual tasks (see image), before and after a 20 minute training course targeting the non-dominant hand

16 trainees participated (8 male, 8 female; median age 29 years (26-35)) • 7 were year ST1-3 (junior), 9 were ST4-7 (senior).

Median completed cataract operations were 155 cases (1-730).

15 (93.8%) stated right-hand dominance, with median EHI score of 87.5). Median self-confidence scores increased significantly following training (12.5/30 vs 16/30;

Improvement in score parameters was demonstrated after targeted training (see table)

Pre-training test score (median)	Post-training test score (median)	Wilcoxon signed rank
51.8	44.1	p<0.05
103.68	92.6	p<0.05
10.5 (3-30)	10.5 (3-18)	p<0.05
76.5	77.8	p<0.05

We have demonstrated that the EYESI simulator can train the non-dominant hand in intra-ocular surgery, resulting in significant improvements in competence performing bimanual tasks. Such improvements correlated with increased self-confidence amongst trainees. Targeted non-dominant hand training should be included in future cataract simulation modules (as

Engagement with bimanual surgical simulation training could also help trainers when supervising

