Glaucoma is the second leading cause of blindness globally. Early detection and treatment are essential to mitigate vision loss. Morphological change of the optic nerve head (ONH) is a key indicator for early detection since it can precede vision loss. This work explored this idea.

Method

Device Calibration
Calibration Toolbox for MATLAB®

Optical Design
(based on the Normal Eye Model)

Mechanical Design
Imaging Mode Calibration Mode

Fabrication
Terracotta ONH Model

Snellen Chart Target

Powerful accuracy (particularly in (prone cases) could be boosted with 3D images) such as

Exploiting computer stereo vision on slit lamp images could be a cost effective solution.

3D Stereo Reconstruction

3D Stereo Vision Techniques

Performing Testing in Phantom and Porcine Eye

Intrinsic & Extrinsic Camera Parameters

Stereo Matching

Rectification

Calibration Images

Posterior Section for Calibration Part 2

Goal

The goal of this work was to initially assess the feasibility of generating 3D reconstructions of the optic nerve head by applying computer stereo vision techniques to stereo images obtained using a slit lamp which is available in practically every primary care clinic fitted with low-cost add-on components. The technique was tested on a life-sized fluid-filled eye phantom and a porcine eye in this work.

Phantom Eye Reconstructions Obtained

Glaucomatous

(RMS Error = 0.068 mm*)

Normal

(RMS Error = 0.037 mm*)

3D reconstructions of normal and glaucomatous ONH models were obtained (which closely matched ground truths), together with that of a porcine ONH.

Outcome

3D reconstructions of normal and glaucomatous ONH models were obtained (which closely matched ground truths), together with that of a porcine ONH.

Significance

The positive results warrant further work to assess the potential of the slit lamp to be used as a quantitative 3D retinal imaging device.

References

Results

Phantom Eye Reconstruction

Porcine Eye Reconstruction

Conclusions

Conclusion

This work explored the possibility of using a commercial stereo vision system to generate 3D reconstructions of the optic nerve head. The technique was tested on a life-sized fluid-filled eye phantom and a porcine eye in this work. The positive results warrant further work to assess the potential of the slit lamp to be used as a quantitative 3D retinal imaging device.